Experience-dependent gene expression in adult visual cortex.

نویسندگان

  • Jiabin Chen
  • Homare Yamahachi
  • Charles D Gilbert
چکیده

Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental Downregulation of Histone Posttranslational Modifications Regulates Visual Cortical Plasticity

The action of visual experience on visual cortical circuits is maximal during a critical period of postnatal development. The long-term effects of this experience are likely mediated by signaling cascades regulating experience-dependent gene transcription. Developmental modifications of these pathways could explain the difference in plasticity between the young and adult cortex. We studied the ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2010